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In  a previous paper (Grimshaw 1979) the resonant over-reflection of internal gravity 
waves from a vortex sheet waa considered in the weakly nonlinear regime. It was 
shown there that the time evolution of the amplitude of the vortex sheet displacement 
was balanced by a cubic nonlinearity. For one vortex sheet mode, symmetrical with 
respect to the interface, it was shown that a steady finite-amplitude wave was possible. 
For the other, asymmetric modes, a singularity develops in a finite time. In the present 
paper, that analysis is extended by replacing the vortex sheet with a thin shear layer 
of thickness aa, where 01 is the amplitude of the shear layer displacement. The effect 
of this extension is to introduce a linear growth rate term in the amplitude equation, 
which is otherwise unaltered. The linear growth rate can be computed from a formula 
due to Drazin & Howard (1966, p. 67). The effect on the modes is that the symmetric 
mode is linearly damped and requires sustained forcing to be observed, while the 
asymmetric modes are slightly destabilized by the linear term and, as in the vortex- 
sheet model, develop a singularity in finite time. 

1. Introduction 
The phenomena of over-reflection, in which a wave incident upon a shear layer 

generates a reflected wave of greabr magnitude, has aroused considerable current 
interest. Acheson (1976) has reviewed the phenomena and, in particular, examined 
the energetics and described the way the excess reflected wave energy is extracted 
from the mean motion, A special case of over-reflection is resonant over-reflection in 
which, according to linear theory, there is no incident wave and the shear layer emits 
only outgoing waves. Lindzen (1974) drew attention to this phenomenon in a study 
of the stability of a vortex sheet in an infinite continuously stratified Boussinesq 
fluid of constant Brunt-VLisiilii frequency. Lindzen commented on the possibility of 
a connection between over-reflection and instability of the basic shear profile. Sub- 
sequently many authors (e.g. Davis & Peltier 1976; Lalas, Einaudi & Fua 1976; 
Lalas & Einaudi 1976; Lindzen & Rosenthal 1976; Lindzen & Tung 1978; Lindzen, 
Farrell & Tung 1980) have demonstrated that the presence of one or more horizontal 
boundaries, or the presence of additional shear layers will imply the existence of 
slowly growing instabilities whose mechanism is successive wave over-reflection. In  
a recent survey of the stability properties of shear flows in unbounded media, Drazin, 
Zaturska & Banks (1979) have demonstrated that the resonant over-reflection mode 
of the vortex sheet is the limit of a slowly growing instability when the vortex sheet is 
replaced by a thin shear layer. 
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FIGURE 1. The co-ordinate system, end the profile of the basic velocity u&). 

All the work referred to in the previous paragraph relates to linear theory. Grimshaw 
(1979) has examined the weakly nonlinear behaviour of the resonant over-reflection 
mode of the vortex sheet, and the purpose of this paper is to extend that analysis to 
the case when the vortex sheet is replaced by a thin shear layer. Davis & Peltier 
(1979) have examined numerically the nonlinear wave-wave interaction between the 
resonant over-reflection mode and the Kelvin-Helmholtz mode which occurs for 
higher wavenumbers. In  this paper, however, we shall confine our attention to the 
resonant over-reflection mode. 

The basic velocity profile u,,(z) is sketched in figure 1. It demonstrates a transition 
from a velocity + 1 as z -+ +00 to - 1 as z + - 00, with the transition being confined 
to a thin layer of thickness 8. The Brunt-ViiisLilL frequency N ( z )  is a constant, taken 
to be 1, as z +- ? 00, but may vary within the shear layer. Throughout we shall use 
non-dimensional variables based on a velocity scale U,, where 227, is the dimensional 
velocity discontinuity across the shear layer, a time scale Ny1, where N, is the dimen- 
sional Brunt-Viiisiilii frequency at infinity and a length scale U, NT'. The equations 
of motion are those for an inviscid, and incompressible, Boussinesq fluid in the absence 
of rotation (cf. Grimshaw 1979). The Boussinesq parameter is B = U,N,/g, and is 
assumed to be small. 

When the basic velocity profile is replaced by a vortex sheet (8 + 0), the linearized 
equations have solutions describing resonant over-reflection. The details are given by 
Grimshaw (1979), and we shall give only an outline here. If y is the vertical particle 
displacement, then in the regions outside the thin shear layer, denoted by the super- 
scripts ? according as z >< 0, 

(1.1) 
where C.C. denotes the complex conjugate. Here a is a small parameter, measuring the 
amplitude of the waves, k( > 0) is the horizontal wavenumber, c is the horizontal 
phage speed and may be complex, and n* is the vertical wavenumber: 

The appropriate choice of sign for n* is determined by requiring that Imn* > 0 
when Im c > 0, and taking the limit Im c + 0. Thus 

5 = aA*exp{ik(x-ct) ? in*z}+c.c., 

(nf)2 = (W*)-2-k2, W* = cT 1. (1.2) 

Imn* > 0, or Imn* = 0, (Ren*) W* < 0. (1.3) 
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For the linearized vortex sheet model, the boundary conditions at the vortex sheet 
imply that 

where w = kc is the frequency. The solutions of 9 = 0 are 

9 ( w ,  k )  = - in+(@ - k)2 - in-(@ + k)2 = 0, (1.4)  

(i) c = 0 for 0 < k2 c 1 ,  ( 1 . 5 ~ )  

(ii) c2 = (2k2)-'- 1 for k2 > 4. (1.5b) 

The solution (i) describes resonant over-reflection, while the solution (ii) describes 
resonant over-reflexion for 4 < k2 < 4, and an unstable mode for k2 > 4. 

The effect of replacing the vortex sheet by a thin shear layer of thickness 8 is to 
perturb these vortex-sheet modes by O(6).  A procedure for calculating this perturba- 
tion has been described by Drazin & Howard (1966, p. 67)  and results in an expression 
of the form 

(1.6) 

where L is an expression involving the structure of uo(z) and N ( z )  within the thin 
shear layer (cf. (2.8b) which is the explicit expression for L).  Equation (1.6) enables 
us to write w = w,, + awl, where wo (recall that w = kc) is the vortex-sheet mode (i) or 
(ii) and w1 is the perturbation; a simple calculation then determines w1 (cf. (2.10)).  
A derivation of (1 .6)  and the computation of w1 for some special cases is described in 
$ 2. For typical shear-layer profiles we shall show that Im w1 < 0 for mode (i) and > 0 
for mode (ii). 

In the weakly nonlinear theory that follows in § 3 we shall allow only wavenumbers 
k such that 4 c k2 < 4, which corresponds to resonant over-reflection for both modes 
(other values of k are permitted for mode (i), see Grimshaw 1979). We let E be a small 
parameter and put 

and allow A* to depend on both T and 2. The aim of the analysis is to derive an ampli- 
tude equation for A(T),  where A(T)  is a measure of the displacement of the thin 
shear layer (approximately A(T)  is A* evaluated at 2 = 0). The linear part of the 
amplitude equation may be deduced by replacing w in (1 .6)  by kc + ka/aT and inter- 
preting the result operationally. Hence we anticipate that the amplitude equation 
will be 

(1 .8)  

Here J represents the nonlinear term, and we shall show that J is proportional to 
a3 I A 1 2A, while the last term represents some weak forcing of amplitude a,. Since the 
leading term on the left-hand side has magnitude O(sa), we see that the required 
balance between the time evolution, the shear-layer thickness, nonlinearity and 
forcing is e = 8 = a2 and a, = as. The amplitude equation is therefore 

(1 .9)  

Here y = -iq,  p is a coefficient whose value we shall derive in 5 3, and I represents 
a forcing term. 

For mode (i) it  turns out that @ is zero, while for (ii) the real part of p is positive. 
The corresponding solutions of the amplitude equation, and their implications are 
discussed in $ 4 .  In  appendix A the Drazin-Howard formula (1.6) is extended to 

9 ( ~ ,  k )  + 6k2L + O(82) = 0, 

T = d, 2 = EZ (1.7) 

aS3(kc + ka/aT, k )  A + a8k2LA = J + a,(forcing). 

aA/aT = y A  +@IA12A + I .  
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FIQURE 2. The complex c-plane, with two overlapping branch cuts along the ml axis. The 
Hips of Re (n+) on the branch cuts is indicated in the diagram. x denotes the position of the 
resonant over-reflection modes (i) or (ii),  for the vortex sheet model. The arrows denote the 
direction of the O(S) thin shear-layer perturbation of these modes; denotes a perturbation 
on the Riemann surface Im (n* )  > 0;  denotes a perturbation onto the Riemann surface 
Im ( n i )  < 0. 

include non-Boussinesq terms. In appendix B we present the full equations of motion 
in the generalized-Lagrangian-mean (GLM) formulation of Andrews & McIntyre 
(1978). A Lagrangian formulation of the equations is necessary as, within the thin 
shear layer, the thickness S(O(a2)) is smaller than the displacement of the shear layer. 
Throughout this paper, the co-ordinates x and z are Lagrangian co-ordinates, whose 
relation to the usual Eulerian co-ordinates is described in appendix B. For the linear 
theory of $ 2  the distinction between the Lagrangian and Eulerian co-ordinates is of 
no consequence, but is essential to the nonlinear analysis of f 3. 

2. Linear theory 
The linear differential equation which governs the stability of the shear flow uo(z) 

in the presence of density stratification characterized by the Brunt-Viiisiilii frequency 
N2(z) is, in the Boussinesq approximation (Drazin & Howard 1966, p. 60), 

(2 . la)  

where w = c-uo. (2.1 b) 

Here, if 5 is the vertical particle displacement, then 5 is proportional to 

Re {$(z)  exp ( ik (x  - ct ) ) } .  

As z-f  +m, we shall suppose that uo+ U* and N --f A'*; in $ 1  and in subsequent 
seotions U* = + 1 and N* = 1, but in this section we shall allow a greater generality. 
We shall further suppose that uo and N approach these constant limits exponentially 
i.e. Juo- U + (  < exp(-Mz) as z+m for some positive constant M, etc. Then, as 
z --f + 00, it follows that 

where (n*)2 = (N*/W*)2-k2,  W* C- U*. (2.2b, c) 

The choice of sign for W* is determined by the criterion Im (n*) > 0 when I m  c > 0 (1.3). 

$-A*exp(+in*z) as z + + _ o o ,  ( 2 . 2 4  
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The complex c-plane must be cut along the real axis between the points where n* 
vanishes. In figure 2 we have sketched the uppermost Riemann surface on which 
Im (n*) are both positive; there are three other Riemann surfaces connected to the 
first across the branch cuts. 

Let us now suppose that the shear layer is thin, and that u, and N are functions of 
z* = z /8 ,  where 8 is a small parameter characterizing the thickness of the shear layer. 
The expressions ( 2 . 2 ~ )  are then outer expansions, valid for fixed z aa 8 +. 0. They 
must be complemented by inner expansions, valid for fixed z* &s 8 + 0. Matching 
these two expansions will yield the dispersion relation from which c aa a function of 
k and 8 can be determined. The dispersion relation we shall obtain by this procedure 
is identical with the Drazin-Howard formula for long waves in a shear flow (Drazin & 
Howard 1966, p. 67, or Drazin et al. 1979); their procedure is to continue the outer 
expansions into the shear-layer region by allowing A* to depend on z*, and then to 
use the invariance of the Wronskian of the differential equation (2.1 a) to determine 
the dispersion relation. We have preferred the matching prcjcedure here aa i t  extends 
naturally to the nonlinear calculation described in § 3. 

In (2 . la) ,  let # be a function of z*. Then ( 2 . 1 ~ )  becomes 

It follows that W2@ a' = constant + o(P). (2.4) 

Now a$/&* = 8a#/& and matching with the outer expansions shows that a#/&* 
is O(6).  Hence the constant of integration in (2.4) is 0(8) ,  and (2.3) implies that the 
inner expansion is 

Here A and B are constants of integration, of the same order of magnitude as A*. 
Matching of the inner and outer expansions is now most readily accomplished by 

replacing z in ( 2 . 2 ~ )  with &*, expanding the result in powers of 8, and equating these 
expansions with (2.5). Strictly speaking, the method of intermediate expansions (Cole 
1968, p. 10) should be used, but the simpler method described above leads directly 
to the Drazin-Howard formula. We find that 

A*{1& bin*z* - &P(n*)2z*2+0(8*)} 

- A + -  " Z * + B B / ~ * ~  (&-&)&* 
( W*I2 

The term P[ ...I is a constant, whose explicit value is omitted as it will not be needed 
subsequently. Matching the terms proportional to z*, and the constant terms, yields, 
respectively, 

B+8AIo*m(kaW2-N"-L2W*2-N*2)dz* = +in* WfSAf, ( 2 . 7 ~ )  
~. 

A+8B[o*m ($-&)dz* = A*. (2.7b) 
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We have omitted terms of O(62). Note that (2.7 b )  implies that the terms proportional 
to S%*2 in (2.6) are already matched. Equations (2.7a, b )  are four equations for the 
four constants A,  B and A*. Eliminating these constants gives the dispersion relation 

9 ( ~ ,  k )  + Sk2L + O(P) = 0, ( 2 . 8 ~ )  

+ nfn- W - 2 j  ( 1 - g) dz* + n+n- Wt2/  ( 1 - F) dz*, (2.8 b )  
0 - m  

and 9 ( w ,  k )  = - in+k2 Wf2 - in-k2 W-2. ( 2 . 8 ~ )  

Equation ( 2 . 8 ~ )  is the Drazin-Howard formula for long waves in a shear flow, and 
may readily be used to calculate the O(6) perturbation of the vortex sheet models 
given by 9 = 0. Thus let wo(k) be a vortex sheet mode, and put 

OJ = o o ( k )  + 6wl(k) + O(6'). (2.9) 

Then ( 2 . 8 ~ )  shows that ~ J w O ,  k )  = - k2Lo, (2.10) 

where Lo is L evaluated at w = wo. For the case U* = 
given by (1.4), we note that 

1 and N* = 1 when 9 is 

2ik( 1 - 2k2) ( 1  - k2)-# for mode (i), (2.1 1 a )  

(2.11 b )  

For this same case, when k2 x 4, 9 ( ( w 0 ,  k )  iszero. There is a triple coalescence of modes, 
i.e. mode (i) coalesces with both modes (ii), and for all three modes w x 0. Equation 
(2.10) is replaced by 

I - 8ik2(1 - 2k2) (4k2- l)-l for mode (ii). 
%(w,, k )  = 

-8i0 w2+- -6k2L0, k: = 8.  (2.12) ( (kikc)) 
Also, for k2 x 4, 9 J w 0 ,  k )  is infinite for mode (ii) and a separate analysis is needed near 
this wavenum ber . 

Further progress depends on the evaluation of Lo, which in turn depends on specify- 
ing uo(z*) and N(z*). Assuming that U* = f 1 and N* = 1, we shall consider the 
three cases : 

( 2 . 1 3 ~ )  

(b )  uo(z*) as in (a)  above, } (2.13b) 
N(z*)  = 0 for Iz*( < 1 ,  N(z*)  = 1 for Iz*I > 1;  

(c) uo(z*) = tanhz*, N(z*)  = 1. ( 2 . 1 3 ~ )  

Note that, although the formula (2.8 b )  has been derived under the condition that 
uo(z*) and N(z*)  are smooth functions of z*, the formula is readily extended to the 
case when N(z*)  or 8uo(z*)/8z* have a finite number of simple jump discontinuities. 



Resonant over-reflection of internal gravity waves 355 

FIQTJRE 3. The graph of Im w when w is given by the cubic equation (2.16). For k-k, < 0, 
and up to the bifurcation point B, the two branches of mode (ii) have Re w + 0; beyond the 
bifurcation point B, and for the whole branch in Im w < 0, Re w = 0. 

Cases (a) and (c) have been discussed by Drazin et al. (1979) .  We find that 

I (a)  mode (i), Lo = Qk2- 4 ,  

mode (ii), Lo = -J$k2; 

(b)  mode (i), Lo = Qk2 - 2, 

mode (ii), Lo = - yk2 + 2;  I 
( 2 . 1 4 ~ )  

(2 .14b)  

(c) mode (i), Lo = - 2 ,  
(2.14 c) 

mode (ii), Lo = -2k2 2+cln - -znc 

Recalling that gW is given by (2.11 a, b), we see that in all three cases Imw, c 0 for 
mode (i) when k2 < 4 (for 4 < k2 < 1 and for cases (a)  and (c) Im w1 > 0 while for case 
(b) Imw, > 0 for 8 c k2 c 9, and Imw, < 0 for $ < ka < l ) ,  and in all three cases 
Imw, > 0 for mode (ii). Thus in all three cases for c k2 c 4, mode (i) is stabilized 
by the O(S) perturbation, while mode (ii) is destabilized. The situation is desoribed 
schematically in figure 2. 

For k2 x 4, Lo = - Q  for case (a), - 8  for case (b) and -%% for cam (c). In all three 
cases Lo is real and negative and (2.12) becomes 

( (2:) - )I 

(2 .15)  

The solutions of this cubic equation for w are sketched schematically in figure 3 .  The 
graphs show that, as k increases through the critical value k, from the stable region 
k c k, to the unstable region k > k,, mode (i) is transformed into the stable branch of 
mode (ii), while the two branches of mode (ii) for k c k, coalesce near k = k,, and then 
bifurcate, with one branch becoming the unstable branch of mode (ii), and the other 
becoming mode (i). 
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3. Weakly nonlinear theory 
For the weakly nonlinear theory the amplitude A* of the vertical particle displace- 

ment, 5 in equation ( 1 . 1 )  is a functiop of the slow time and space variables, T and 2 
respectively (1 .7 ) .  All field variables are expressed as Fourier series in the phase 
variable k(x - ct) ,  with coefficients which, for the outer expansions (valid in the region 
outside the thin shear layer), are functions of T, z and 2. Thus, for example, 

m 

6 = tm(T, z, 2) exp { imk(x -  c t ) }  + c.c., 
? M = l  

where C.C. denotes the complex conjugate. The coefficients in these equations are 
determined by substituting these Fourier series into the equations of motion and 
equating like Fourier components. For the Eulerian equations of motion, the procedure 
and results are described by Grimshaw (1979).  Here, for reasons given below, we have 
chosen to use a Lagrangian formulation of the equations of motion. For the outer 
expansions, this leads to some differences in details from the Eulerian formulation, 
but no major differences in the results. Hence we shall give only a brief outline. 

The Lagrangian formulation we shall use is the generalized-Lagrangian-mean 
formulation of Andrews & McIntyre (1978)) which is described in appendix B. The 
field variables are the Lagrangian mean quantities, EL (mean horizontal velocity), 
WL (mean vertical velocity), j+ (mean pressure) and jP (mean density); here the 
leading terms in 3iL, jiL and pL are uo(z) (the basic shear flow), po(z) (the basic pressure 
profile) and p,(z) (the basic density profile). The equations for these mean quantities 
are (B 5a),  (B 7) and (B 10a, b). Relative to this mean flow there are the field variables 
which describe the wave motion; these variables are E (horizontal particle displace- 
ment), 5 (vertical partical displacement) and q (a pressure perturbation). The equa- 
tions for these variables are (B 6 b )  and (B l l a ,  b). It is now convenient to write 
these equations for the outer expansions as z + f 00 in the following form 

- 

( 3 . 2 ~ )  

(3 .2b )  

( 3 . 2 ~ )  

Here G, FH, and Fv are nonlinear expressions which we shall not display explicitly; 
they may be readily deduced from the exact equations (B 6 b )  and (B l la,  b). We 
have also used the limits uo(z) + f 1 and N + 1 as z -+ f 00, and used the Boussinesq 
approximation. Elimination of E and q gives the single equation 

where 

and 

( 3 . 3 4  

(3 .3b )  

(3 .3c)  
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Here L* is a linear operator, and M* contains the nonlinear terms. Substituting the 
Fourier series (3.1) into (3.3a), and equating like Fourier components, it follows that 

where M& is the mth Fourier component of M*. 
For the Fourier component m = 1, it may be shown that Mlf is O(a3) and so 

(;1 = aA*(T,Z)exp( & in*z)+aoI*(T,Z)exp( T in*z)+a3@+O(a6), (3.5) 

where n* is defined by ( 1 . 2 ) ,  and the terms I* represent forcing by incident waves; 
LJ3) is a term forced by Mlf at O(a3). For m = 2 it may be shown that Maf is O(a6), 
and so 

( 3 . 6 ~ )  

where (naf)2 = ( c  T 1)-2- aka. (3.6b) 

Here A$ will be determined by matching with the corresponding Fourier component 
in the shear layer, and the factor a2 has been inserted in anticipation of this matching. 
A discussion of the value of n$ for each mode (i) or (ii), and the role this Fourier com- 
ponent plays in the amplitude equation is given by Grimshaw (1979). 

The mean flow, or Fourier component m = 0, is determined from the mean flow 
equations (B 5a) ,  (B 7) and (B 10a, b). It may be shown from (B 5a) and (B 6a) 
that  * is O(ea4), and then it follows from (B 7) that = po(z) + O(a4). It is readily 
seen that the solution of (B 10a) is ;iiL = uo(z) +PH, aa the mean flow is independent 
of x. Evaluating gH, it follows that 

= a2Azf(T, 2) exp ( & in$ x )  + O(a4),  

since uo(z) --f & 1 aa z -+ & 00. Finally it may be shown from (B lob) that 

= p,,(x) + 2a2(n* W*)2 I A*/ + O(a4). (3.8) 

Returning to the Fourier component m = 1, we find that 

The first term, being proportional to Cl, determines the variation of A* with T and 2, 

(3.10) 

This equation is identical with the corresponding equation in the Eulerian formulation 
(Grimshaw 1979), where it was shown that modulations in lA*l propagate vertically 
with the local group velocity, while phase changes in A* are determined by an ampli- 
tude-dependent Doppler shift in the local frequency due to the wave-induced com- 
ponent of ZL (3.7). The second term in M$ (3.9) is responsible for the term 513) in 
( 3 4 ,  and we find that 

~ $ 3 )  = -gi(2n*-nh)52c. (3.11) 

For the inner expansion within the thin shear layer we put z* = z /8 .  Since the 
thickness of the shear layer is 0(6) ,  while the amplitude of the motion of the shear 
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layer is O(a), and our scaling anticipates that 6 = a2, we see that the thickness of the 
shear layer is an order of magnitude smaller than its displacement. It is for this 
reason that an Eulerian formulation poses difficulties, and we have preferred to use 
a Lagrangian formulation. With z* = z/S,  the equations (B 6 b) and (B 1 1  a, b) become, 
in the Boussinesq approximation, 

( 3 . 1 2 ~ )  

where the omitted terms are higher-order nonlinear terms not needed in the subse- 
quent analysis, and the square-bracket notation indicates that the Fourier component 
m = 0 is to be deleted from the contained expression. For these equations we again 
seek a Fourier series expansion of the form 

OD 

c = C,(T, z*) exp {imk(x- ct)} + c.c. 
m=1 

(3.13) 

It follows immediately from (3 .12~4  b, c)  that 

+O(a3), q1 - aB(T)+0(a3); (3.14a, b, c) 
iaB(T) el = a 4 T )  + O W ) ,  5, = k ~ 2  

A ( T )  is the amplitude of the displacement of the vortex sheet, to which the shear layer 
reduces in the limit 6 -+ 0. Matching with the outer expansions, e.g. ( 3 4 ,  shows that 

A*(T, 0) = A ( T )  + 0(a2), 

f in*W*2A*(T, 0) = B(T)  + O(a2). 

(3.15 a) 

(3.16 b) 

The dispersion relation (1.4) for the vortex-sheet limit is readily deduced from 
(3.15 a, b).  

For m = 2, i t  may be shown from (3.12a, b, c)  that 

a2B2 
W q2 = a2B2(T) - + O(a4). 

Matching with the outer expansions, e.g. (3.6a), shows that 

A$(T,  0) = A,(!!') T in*A2+0(aa), 

+in$W*2A$(T, 0) = B2(T)+{&-k2W*2}A2+O(a2) .  

( 3.1 6 a) 

(3.16b) 

( 3.1 6 c) 

(3.13 a) 

(3.17 b) 
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There are four equations for A$,  A, and B,. Solving these, we find that, for each mode, 

(i) A, = i( 1 - k2)i A,+ O(a2), Azf = O(a2), ( 3 . 1 8 ~ )  

1 f C  

A 1 T c  
- 4kac 7 4kcnz (-)) + O($), 

(3 .18b)  

(3.18 c )  

where A = n . $ ( l - ~ ) ~ + n ~ ( l + c ) ~ .  (3 .18d)  

These results agree with the Eulerian calculations of Grimshaw (1979).  
The mean flow, or Fourier component m = 0 is determined from the mean flow 

equations (B 5a) ,  (B 7 )  and (B 10a, b) ,  with the substitution z* = z/S. It may be 
shown from (B 5a) and (B 6a) that + is O ( ~ a 4 ) ,  andmatcheswith the outerexpansions, 
although we shall not display the details of this calculation. Then it follows from 
(B 7 )  that pL = p,(z) + O(a4),  and also matches with the outer expansions. The solu- 
tion of (B 10a) is TiL = uo(z*) +PI,, and this clearly matches with the outer expansions, 
as it is the same solution. Within the shear layer 

u - u,(z*)+2a2W 
w4 

-L - 

Finally it may be shown from (B lob) that 

pL = po(z*) + 2012- PI2 + O(a4), 
WZ 

which matches with the outer expansions (3 .8) ,  on using (3 .15b) .  
Returning to  the Fourier component m = 1, we fhd from ( 3 . 1 2 ~ )  that 

2 A , B  B,A 31BlaA BZA kalAI2A + ------- where 
2WZ 2 w 4  4W4 

Similarly we find from ( 2 . 1 2 ~ )  that 

(N2 - ka W z )  dz* + a2B3 + O(a5), 

where B -(-L--- 5B B 31BI2B 
3 -  2 w 2  4 w4 

(3.19) 

(3 .20)  

(3 .21a)  

(3.21 b )  

( 3 . 2 2 ~ )  

(3 .223)  

E, may then be found from (3 .12b) .  These expressions, (3.21) for cl and (3 .22)  for ql,  
are then matched to the outer expansions, (3 .5 )  for cl and a similar expression for q1 
deduced from (3 .2b ) .  This matching process produces a set of equations for the 
variables A,  B and A*(Z = 0), which, for the terms proportional to S are identical 
with equations (2 .7a ,  b), but now contain some additional terms of O(a2) (the non- 
linear terms), O(s) (terms proportional to aA/aT), and terms involving the incident 
wave packets. Eliminating B and A*(Z = 0), we find that 

A = a o ( 9 + I + + 9 - I - } - a 8 k z L +  J ,  (3 .23)  
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where !2 is defined by (2.8c), L is defined by (2 .8b) ,  

!2* = 2in*kW** 
and J is the nonlinear expression 

(3.24) 

- a3k*[B3]? + O(a6). (3.25) 

Here [ . . . I +  denotes the discontinuity in the contained expression across the thin 
shear layer. Evaluating J, we find that 

8ick4a3(AI2A 3(1+ca)A 4c - - (n$ ( 1 - c ) ~  - n, ( 1 + c)*)) + O(a6), (3.26) A (1-c2) (1-c2) 
J =  

which agrees with the Eulerian calculation of Grimshaw (1979). 
To conclude this section we note that the expansion in the amplitude parameter a 

fails in the vicinity of the critical level where W z 0. Since the formulae (2.14a, b, c) 
show that Imc 9 0, our nonlinear expressions remain determinate, but expressions 
such aa (3.16a, b, c), (3.21b) and (3.22b) will fail when W is O(&. A separate critical- 
layer analysis is needed, the thickness of this layer being O ( d )  in the z* co-ordinate, 
or O ( d )  in the z co-ordinate. We shall not attempt this analysis here, as our concern 
is to evaluate J, and, since none of the nonlinear expressions to O(a3) involve integrals 
across the critical layer, we have been able to evaluate J without recourse to a critical- 
layer analysis. In  contrast the Drazin-Howard formula L (2.8b) for the perturbation 
of the vortex-sheet modes does involve integrals across the critical layer, and to 
evaluate these integrals we have invoked the fact that Im c, although small, is not zero. 

4. Discussion of the amplitude equation 
“he amplitude equation is (1.9), or (4.1) below. The coefficient /3 is found by de- 

riving theamplitudeequationin the form (1.8)or (3.23), where9,isgiven by (2.11a, b) 
and B* by (3.24), and then combining this with J as given by (3.26). The result is 

where the coefficient /3 ie given by 

(0 for mode (i), (4.2a) 

] for mode (ii). (4.2b) 
2k( 1 -c*) - n$( 1 - c)* + n!-( 1 + c)* 

n$( 1 - c)2+ n;( 1 + c)2 

The coefficient y is -iwl, where w1 is given by (2.10), and I is a linear combination 
of I+ and I- with coefficients !2*/BW (see (2.11a, b) and (3.24)). The coefficient /3 is 
identical with the coefficient derived by Grimshaw (1979) for the nonlinear term of 
the vortex-sheet model, and so the only effect on the amplitude equation of replacing 
the vortex-sheet model with the thin shear layer is the introduction of the linear term 
y A .  In f 2 it waa shown for three typical shear layer profiles that Re y is negative for 
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mode (i), and positive for mode (ii). In the subsequent discussion we shall assume 
these signs for Re y. 

For mode (i), when /? = 0 and Re y < 0 the solution is 

A = A,  exp (yT)  + J T I ( T ’ )  exp (y(T - T’) )  dT‘, 
0 

(4.3) 

where A,  is the amplitude at T = 0. If the forcing has finite extent (I = 0 for T > To 
say), then ultimately A + 0 as T + 00. However, if the forcing is maintained and 
I + constant as T + 00, then A -+ -I/y as T -+ 00. Thus, for mode (i), sustained 
forcing will lead to a steady over-reflection mode. 

For mode (ii), it was shown by Grimshaw (1979) that PR = Re (p)  is positive. If 
there is no forcing, or if the time scale of the incident wave packets is very short so 
that I may be approximated by A06(T), where 6(T) is the delta function, then the 
solution of (3.1) is 

where v = -  ’ and y R = R e ( y ) .  
2Px 

(4.4b) 

Here yx is positive, and thus the solution develops a singularity in a time T,, where 

As T + T, both IAI and arg A approach infinity as A spirals outwards in the 
complex-A plane. The solution is qualitatively similar to the case y = 0 considered 
by Grimshaw (1979), where there is a discussion of the application of this result to 
observed waves in the atmosphere. Here we note that, as yR -t 0, Tm -+ 1/2IR1 A,l* 
and, as yR increases from zero, T, decreases. 

If I is not zero, then in general (4.1) must be integrated numerically. If the time 
scale of the incident wave packets is very long so that I may be approximated by a 
constant, then there is an equilibrium solution of (4.1). However, this equilibrium 
solution is unstable, and all solutions develop a singularity in finite time. Close to this 
singularity the solution will be described by an expression similar to ( 4 . 4 ~ ~ ) .  When 
y = 0, a detailed analysis of this case is described by Grimshaw (1979); for y + 0 
the analysis is similar but will not be repeated here. 

In summary, the effect of replacing the vortex sheet modelwith the thin shear layer, 
is to introduce a linear growth rate term (yA) in the amplitude equation, which is 
otherwise unaltered. Further, we find that for mode (i) Rey c 0 for typical shear 
layers, and is zero; thus this mode requires sustained, although weak, forcing to be 
observed. In  contrast, for mode (ii) Re y > 0 and R e p  > 0; this mode develops a 
singularity in finite time, the lifetime of the mode being T, (4.5). This mode is quali- 
tatively similar to the case y = 0. 

This work was carried out while the author was on study leave at the Department 
of Makhematics, M.I.T., to whom acknowledgement is made for their hospitality. 
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Appendix A. Linear theory without the Boussinesq approximation 
The linear differential equation which governs the stability of a stratified shear flow 

is 
- (Po a wag) + p o ( N a - k W ) $  = 0, az 

Here po(z) is the density stratification, and u is the Boussinesq parameter. The re- 
maining variables have the same definitions as those given in $ 2  for equations (2.1 a, b). 
The Boussinesq approximation is to let u +. 0 in (A 1 a ) ,  which then reduces to (2 .1~ ) .  
Let 

Then i t  follows that 

a 
( W t g ]  + (Na- Wa (I?- 40% (Na) $ = 0. (A 3) 

As in $ 2, we shall suppose that, as z +. & m, uo +. U* and N + N*. Then, aa z + & GO, it 
follows that 

$-A*exp(fin*z) as Z + + G O ,  (A 4 4  

where 

The definition of n* reduces to (2 .2b )  as u +. 0, and the choice of sign is again deter- 
mined by the criterion Im (n*) > 0 when Im c > 0. 

In  the shear layer we again suppose that uo and N are functions of z* = 218. The 
solution for $ in the shear layer is found in an analogous manner to the method used 
for $ in f 2, and the result for $ is similar to equation (2.5) for $. Matching proceeds 
as described in 5 2, and the final result is the following dispersion relation 

$(o, k)  + 8kaZ + O(68) = 0, (A 5 4  

where = kaJom ( Wa - W+a) dz* + ka ( Wa - dz* !Irn 
-lorn (Na + N+a) dz* -so (Na - N-a) dz* 

- m  

+ m+m-w-aJom ( I  - g) dz* + m+m-W+a 

g ( w ,  k )  = - im+ka W+a - im-ka W-a, (A 5 4  
and m* = n*T &uN*~. (A 5 4  

Note that (A 5a) is formally identical with ( 2 . 8 ~ )  provided that n* in ( 2 . 8 ~ )  is replaced 
by mf (A 5 4 ,  noting that n* in (A 5 d )  is now given by (A 4 b). 

The vortex sheet modes are now given by 

.G(w0, k)  = 0. (A 6) 

(i) c = 0, 0 < ka < 1 - i ~ ~ .  (A 7) 

Assuming that U* = f 1 and N* = 1, it is readily verified that one solution of (A 6) is 
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Thus mode (i) is unaffected by the Boussinesq approximation, at least in the linear 
theory, the only change from (1.6) being a further restriction on the wavenumber k. 
However, it  may be shown that (A 6) has no other solutions corresponding to over- 
reflection modes; i.e. there are no other solutions with both c and nf real. As cr + 0, 
we may perturb mode (ii), and we fhd  that 

(ii) c = c0{ 1 - ia(4k2 - l)/4k( 1 - 2k8) + O(a2)}, (A 8 4  

1. (A 8 b )  c; =-- 
1 
2k8 where 

Equation (A 8a)  gives the curious result that, of the two waves contained in mode 
(ii), the wave to the right (co positive) is stabilized by the O(a) perturbation, while 
that to the left (co negative) is destabilized. 

Appendix B. GLM formulation of the equations of motion 
In  this appendix we shall give a brief outline of the generalized-Lagrangian-mean 

(GLM) formulation of the equations of motion due to h d r e w s  & McIntyre (1978). 
For an inviscid, incompressible, stably stratified fluid the GLM formulation has been 
described by Grimshaw (1981), and we shall use that formulation here. 

First, for any field variable q5, we define an Eulerian averaging operator, denoted 
by (...); for the application described in the main body of this paper, (...) denotes 
an average over one horizontal wavelength. Then let x, z be Lagrangian co-ordinates, 
and c(x,z,t), ((z,z,t) be particle displacements defined so that the Eulerian co- 
ordinates (x’, 2’) are related to (2, z) by the relations 

2‘ = x+E, 2’ = z + 5 .  (B 1) 

(B 2) 

Then define a Lagrangian mean operator by 

P(., z, t )  = (d@+ 5, z + 520). 
The Lagrangian mean of # is an average following the fluid motion. As shown by 
Andrews & McIntyre, this notion is made precise by requiring that 

(5) = (5 )  = 0, (B 3) 

whence it follows that (2, z )  are co-ordinates which move with the Lagrangian mean 
velocity (EL,*), whenever the Eulerian co-ordinates (x’,z‘) move with the true 
velocity (u, w). 

To obtain the equations of motion in the GLM formulation we first introduce the 
Jacobian of the transformation from (2, z )  to (x‘, z’),  

It may then be shown that 

where 
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Here d/dt is the material derivative following the fluid motion. It follows that f is 
a Lagrangian mean quantity, and so 

and 

Here, for any field quantity q5, we define [q5] = q5 - (q5) to be the Lagrangian pertur- 
bation of q5. The density p is a Lagrangian mean quantity so p = jjL and [ p ]  = 0, 

d p  where 
- = 0. dt 

The remaining equations are 

A more convenient form of these equations is obtained by multiplying (B Sa) by 
ax’/ax (or ax’/az) and ( B  8b)  by &‘/ax (or az’/az) and adding the result. Further 
simplification is obtained by writing 

The result of these manipulations is the following set of equations for the mean flow 

where 

and 

(B 10a) 

(B lob) 

(B 1Oc) 

(B 10d) 

(B 10e) 

The equations of motion for the particle displacements are 

The Boussinesq approximation is obtained by assuming that jjL = p,(z) + O(u), that  
apo/az = - upo N2 ( A  1 b), and then taking the limit u + 0. I n  the resulting equations, 
p,(z), where it occurs explicitly, is assumed to be a constant, which we choose to 
be 1. 
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